Factorization Statistics, Representation Stability, and the Growing Gaps Principle

Trevor Hyde

 University of Michigan
Factorization Statistics

$\triangleright \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)=$ the set of monic degree d polynomials in $\mathbb{F}_{q}[x]$.
\triangleright The factorization type of $f(x) \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)$ is the partition of d given by the degrees of the irreducible factors of $f(x)$.

Ex.

$$
x^{2}(x+1)\left(x^{2}+1\right)^{3} \in \operatorname{Poly}_{9}\left(\mathbb{F}_{3}\right)
$$

has factorization type $\lambda=\left(1^{3} 2^{3}\right)$.
\triangleright A factorization statistic is a function $P: \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{Q}$ such that $P(f)$ depends only on the factorization type of $f(x)$.

Ex. $R=$ total number of \mathbb{F}_{q}-roots with multiplicity.
Ex. $F=$ total number of irreducible factors.

Squarefree Polynomial Statistics

\triangleright Let ϕ_{d}^{k} be the S_{d}-character of $H^{k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{2}\right), \mathbb{Q}\right)$ and let $\langle\cdot, \cdot\rangle$ be the standard inner product of S_{d}-class functions.
$\triangleright \operatorname{Poly}_{d}^{\mathrm{sf}}\left(\mathbb{F}_{q}\right)$ is the set of squarefree polynomials.

Theorem (Church, Ellenberg, Farb 2014)

Let P be a factorization statistic, then

$$
\frac{1}{q^{d}} \sum_{f \in \operatorname{Poly}_{d}^{\mathrm{sf}}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{d-1}(-1)^{k} \frac{\left\langle P, \phi_{d}^{k}\right\rangle}{q^{k}}
$$

Idea: $\operatorname{Poly}_{d}^{\mathrm{sf}}(\mathbb{C}) \cong \operatorname{PConf}_{d}(\mathbb{C}) / S_{d} \cong \operatorname{PConf}_{d}\left(\mathbb{R}^{2}\right) / S_{d}$, apply Grothendieck-Lefschetz trace formula with twisted coefficients.

Unrestricted Polynomial Statistics

\triangleright Let ψ_{d}^{k} be the S_{d}-character of $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$.

Theorem (H. 2017)

Let P be a factorization statistic, then

$$
\frac{1}{q^{d}} \sum_{f \in \operatorname{PPoly}_{d}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{d-1} \frac{\left\langle P, \psi_{d}^{k}\right\rangle}{q^{k}} .
$$

Algebraic geometry does not (apparently) help.
\triangleright Need a different approach!

Reduction to Interpretation of Measures

\triangleright Let $\nu(\lambda)$ denote the probability of an $f(x) \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)$ having factorization type $\lambda \vdash d$. We call ν the splitting measure.

$$
\frac{1}{q^{d}} \sum_{f \in \operatorname{Poly}_{d}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{\lambda \vdash d} P(\lambda) \nu(\lambda)
$$

\triangleright Theorem is equivalent to showing

$$
\nu(\lambda)=\frac{1}{z_{\lambda}} \sum_{k=0}^{d-1} \frac{\psi_{d}^{k}(\lambda)}{q^{k}}
$$

for all partitions $\lambda=1^{m_{1}} 2^{m_{2}} \cdots$ where $z_{\lambda}=\prod_{j \geq 1} j^{m_{j}} m_{j}!$.
(Recall: ψ_{d}^{k} is the S_{d}-character of $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$.)

Generating Functions and Euler Products

Idea: Combine all $\nu(\lambda)$ into one generating/symmetric function.
\triangleright Unique factorization translates into an "Euler product",

$$
\sum_{d \geq 0} \sum_{\lambda-d} \nu(\lambda) p_{\lambda}=\prod_{j \geq 1}\left(\frac{1}{1-\frac{p_{j}}{q}}\right)^{M_{j}(q)},
$$

where $M_{d}(q)=\frac{1}{d} \sum_{e \mid d} \mu(e) q^{d / e}$ is the d th necklace polynomial.
\triangleright Sundaram, Hanlon, and others used the plethystic description of $H^{*}\left(\operatorname{PConf}_{*}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ as $\operatorname{Sym}($ Lie $)$ to compute its Frobenius characteristic:

$$
\sum_{d \geq 0} \sum_{\lambda \vdash d}\left(\frac{1}{z_{\lambda}} \sum_{k=0}^{d-1} \frac{\psi_{d}^{k}(\lambda)}{q^{k}}\right) p_{\lambda}=\prod_{j \geq 1}\left(\frac{1}{1-\frac{p_{j}}{q^{j}}}\right)^{M_{j}(q)}
$$

Generating Functions and Euler Products

Idea: Combine all $\nu(\lambda)$ into one generating/symmetric function.
\triangleright Unique factorization translates into an "Euler product",

$$
\sum_{d \geq 0} \sum_{\lambda-d} \nu(\lambda) p_{\lambda}=\prod_{j \geq 1}\left(\frac{1}{1-\frac{p_{j}}{q}}\right)^{M_{j}(q)},
$$

where $M_{d}(q)=\frac{1}{d} \sum_{e \mid d} \mu(e) q^{d / e}$ is the d th necklace polynomial.
\triangleright Sundaram, Hanlon, and others used the plethystic description of $H^{*}\left(\operatorname{PConf}_{*}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ as $\operatorname{Sym}($ Lie $)$ to compute its Frobenius characteristic:

$$
\sum_{d \geq 0} \sum_{\lambda \vdash d}\left(\frac{1}{z_{\lambda}} \sum_{k=0}^{d-1} \frac{\psi_{d}^{k}(\lambda)}{q^{k}}\right) p_{\lambda}=\prod_{j \geq 1}\left(\frac{1}{1-\frac{p_{j}}{q^{j}}}\right)^{M_{j}(q)}
$$

Generating Functions and Euler Products

\triangleright Same strategy works in the squarefree case to give another proof of CEF result,

$$
\sum_{d \geq 0} \sum_{\lambda \vdash d}\left(\frac{1}{z_{\lambda}} \sum_{k=0}^{d-1}(-1)^{k} \frac{\phi_{d}^{k}(\lambda)}{q^{k}}\right) p_{\lambda}=\prod_{j \geq 1}\left(1+\frac{p_{j}}{q^{j}}\right)^{M_{j}(q)}
$$

(Recall: ϕ_{d}^{k} is the S_{d}-character of $H^{k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{2}\right), \mathbb{Q}\right)$.)
Bonus: Splitting measure interpretation gives us an efficient, direct way to compute the characters ψ_{d}^{k} and ϕ_{d}^{k}.

Representation Stability \Longrightarrow Asymptotic Stability

\triangleright For each $k \geq 0$, the sequences $H^{k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{2}\right), \mathbb{Q}\right)$ and $H^{2 k}\left(\operatorname{PConf}_{d}\left(\mathbb{R}^{3}\right), \mathbb{Q}\right)$ are representation stable.
\triangleright CEF showed rep. stability translates into asymptotic stability for first moments of factorization stats given by character polynomials P,

$$
\begin{aligned}
& \lim _{d \rightarrow \infty} \frac{1}{q^{d}} \sum_{f \in \text { Poly }_{d}^{s f}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k \geq 0}(-1)^{k} \frac{\left\langle P, \phi^{k}\right\rangle}{q^{k}} \\
& \lim _{d \rightarrow \infty} \frac{1}{q^{d}} \sum_{f \in \text { Poly }_{d}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k \geq 0} \frac{\left\langle P, \psi^{k}\right\rangle}{q^{k}} .
\end{aligned}
$$

Representation Stability from Growing Gaps

\triangleright Rep. stability and asymp. stability follow directly from Euler products (observed by Fulman, Chen, Hersh-Reiner, and others.) \triangleright Connection to configuration spaces only needed to get Schur positivity.

$$
\begin{aligned}
\sum_{d \geq 0} \sum_{\lambda \vdash d}\left(\frac{1}{z_{\lambda}} \sum_{k=0}^{d-1}(-1)^{k} \frac{\phi_{d}^{k}(\lambda)}{q^{k}}\right) p_{\lambda} & =\prod_{j \geq 1}\left(1+\frac{p_{j}}{q^{j}}\right)^{M_{j}(q)} \\
\sum_{d \geq 0} \sum_{\lambda \vdash d}\left(\frac{1}{z_{\lambda}} \sum_{k=0}^{d-1} \frac{\psi_{d}^{k}(\lambda)}{q^{k}}\right) p_{\lambda} & =\prod_{j \geq 1}\left(\frac{1}{1-\frac{p_{j}}{q^{j}}}\right)^{M_{j}(q)} .
\end{aligned}
$$

Key: $M_{d}(q)=\frac{1}{d} q^{d}+O\left(q^{d / 2}\right)$
\triangleright Gaps between leading and subsequent term grow with d.
\triangleright Growing gaps imply values of ϕ_{d}^{k} and ψ_{d}^{k} are given by character polynomials independent of d.

Representation Stability from Growing Gaps

Theorem (Growing Gaps Principle)

Let $F_{d}(q)$ for $d \geq 1$ be a sequence of polynomials with $\operatorname{deg} F_{d}(q)=d$ such that for each $g \geq 1, F_{d}(q)=\frac{1}{d} q^{d}+O\left(q^{d-g}\right)$ $f o r ~ a l l ~ b u t ~ f i n i t e l y ~ m a n y ~ d \geq 1 . ~ D e f i n e ~ s y m m e t r i c ~ g r o u p ~ c l a s s ~$ functions χ_{d}^{k} by an Euler product,

$$
\sum_{d \geq 0} \sum_{\lambda \vdash d}\left(\frac{1}{z_{\lambda}} \sum_{k=0}^{d} \frac{\chi_{d}^{k}(\lambda)}{q^{k}}\right) p_{\lambda}:=\prod_{j \geq 1}\left(\frac{1}{1 \pm \frac{p_{j}}{q^{j}}}\right)^{ \pm F_{j}(q)}
$$

Then for each $k \geq 0$, the sequence χ_{d}^{k} exhibits representation stability.
\triangleright This is a preliminary version of a general principle.

Bounded Multiplicity Polynomial Statistics

\triangleright Let $m \geq 1$ and let Poly $m_{d}\left(\mathbb{F}_{q}\right)$ be the subset of polynomials in Poly $_{d}\left(\mathbb{F}_{q}\right)$ with max factor multiplicity $\leq m$.

Ex. $\operatorname{Poly}_{d}^{\mathrm{sf}}\left(\mathbb{F}_{q}\right)=\operatorname{Poly}_{d}^{1}\left(\mathbb{F}_{q}\right)$.
\triangleright Let $\nu^{m}(\lambda): \left.\left.=\frac{1}{q^{d}} \right\rvert\,\left\{f \in \operatorname{Poly}_{d}^{m}\left(\mathbb{F}_{q}\right):\right.$ fact. type of $\left.f=\lambda\right\} \right\rvert\,$ for $\lambda \vdash d$, then

$$
\sum_{d \geq 0} \sum_{\lambda \vdash d} \nu^{m}(\lambda) p_{\lambda}=\prod_{j \geq 1}\left(\frac{1-\frac{p_{j}^{m+1}}{q^{j}}}{1-\frac{p_{j}}{q^{j}}}\right)^{M_{j}(q)}
$$

\triangleright Growing gap principle implies coefficients of ν^{m} satisfy rep. stability and thus asymp. stability.
\triangleright Coefficients of ν^{m} are typically virtual characters.

Sundaram's Lie Variants

\triangleright Let $g: \mathbb{N} \rightarrow \mathbb{R}$ be a function and consider

$$
F_{d}(q):=\frac{1}{d} \sum_{e \mid d} g(e) q^{d / e}
$$

\triangleright In recent work Sundaram uses the symmetric functions defined by the coefficients of the Euler products

$$
\prod_{j \geq 1}\left(\frac{1}{1 \pm p_{j} j^{j}}\right)^{ \pm F_{j}(\pm q)}
$$

to study variations of the Lie and Foulkes representations, Schur positivity of sums of power sums, and positivity of restricted row sums in symmetric group character tables.
\triangleright Growing gaps principle implies these symmetric functions exhibit rep. stability.

Divisor Statistics on Varieties over \mathbb{F}_{q}

\triangleright Let V be a variety defined over \mathbb{F}_{q}.
$\operatorname{Conf}_{d}(V)\left(\mathbb{F}_{q}\right):=\left\{\right.$ Subsets $\left.C \subseteq V\left(\overline{\mathbb{F}}_{q}\right):|C|=d, \operatorname{Frob}_{q}(C)=C\right\}$
$\operatorname{Sym}_{d}(V)\left(\mathbb{F}_{q}\right):=\left\{\right.$ Multisubsets $\left.C \subseteq V\left(\overline{\mathbb{F}}_{q}\right):|C|=d, \operatorname{Frob}_{q}(C)=C\right\}$
\triangleright Elements of $\operatorname{Conf}_{d}(V)\left(\mathbb{F}_{q}\right)$ and $\operatorname{Sym}_{d}(V)\left(\mathbb{F}_{q}\right)$ have "factorization types" given by Frobenius orbits.

$$
\begin{aligned}
& \sum_{d \geq 0} \sum_{\lambda \vdash d}\left|\operatorname{Conf}_{\lambda}(V)\left(\mathbb{F}_{q}\right)\right| p_{\lambda}=\prod_{j \geq 1}\left(1+p_{j}\right)^{M_{j}(V)} \\
& \sum_{d \geq 0} \sum_{\lambda \vdash d}\left|\operatorname{Sym}_{\lambda}(V)\left(\mathbb{F}_{q}\right)\right| p_{\lambda}=\prod_{j \geq 1}\left(\frac{1}{1-p_{j}}\right)^{M_{j}(V)}
\end{aligned}
$$

where

$$
M_{d}(V):=\frac{1}{d} \sum_{e \mid d} \mu(e)\left|V\left(\mathbb{F}_{q^{d / e}}\right)\right|
$$

counts the number of length d Frobenius orbits in $V\left(\overline{\mathbb{F}}_{q}\right)$.

Divisor Statistics on Varieties over \mathbb{F}_{q}

$$
M_{d}(V):=\frac{1}{d} \sum_{e \mid d} \mu(e)\left|V\left(\mathbb{F}_{q^{d / /}}\right)\right|
$$

\triangleright Weil conjecture imply that $\left|V\left(\mathbb{F}_{q^{m}}\right)\right|$ is a polynomial in q and finitely many other parameters.
\triangleright Chen used equivalent generating functions to show asymp. stability for fac. statistics on these spaces.
\triangleright Weil conjectures imply $M_{d}(V)$ has growing gaps, hence we get rep. stability (for essentially any way we choose to define our class functions.)

Thank you!

