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Factorization Statistics

> Poly4(IFg) = the set of monic degree d polynomials in Fq[x].

> The factorization type of f(x) € Polyy(Fq) is the partition of d
given by the degrees of the irreducible factors of f(x).

Ex.
X2(x + 1)(x? 4 1)3 € Poly,(F3)

has factorization type A = (13 23).

> A factorization statistic is a function P : Poly,(Fq) — Q such
that P(f) depends only on the factorization type of f(x).

Ex. R = total number of Fg-roots with multiplicity.

Ex. F = total number of irreducible factors.



Squarefree Polynomial Statistics

> Let ¢k be the Sy-character of H¥(PConf,4(R?), Q) and let (-, -)
be the standard inner product of S4-class functions.

> Polyf,f(]Fq) is the set of squarefree polynomials.

Theorem (Church, Ellenberg, Farb 2014)

Let P be a factorization statistic, then
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Idea: PolyS (C) = PConfy(C)/Sy = PConf4(R?)/Sy, apply
Grothendieck-Lefschetz trace formula with twisted coefficients.



Unrestricted Polynomial Statistics

> Let ¢K be the Sy-character of H*(PConfy(R?), Q).

Theorem (H. 2017)

Let P be a factorization statistic, then
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D SN GRS SEES

Algebraic geometry does not (apparently) help.
> Need a different approach!



Reduction to Interpretation of Measures

> Let v(\) denote the probability of an f(x) € Poly4(FFq) having
factorization type \ i~ d. We call v the splitting measure.
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> Theorem is equivalent to showing
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for all partitions A\ = 1M2M2... where z, = Hj21jm/‘mj!.

(Recall: ¢X is the Sg-character of H*(PConf,(R?), Q).)



Generating Functions and Euler Products

Idea: Combine all () into one generating/symmetric function.

> Unique factorization translates into an “Euler product”,
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where My(q) = 3 > /g 11(€)q”® is the dth necklace polynomial.

> Sundaram, Hanlon, and others used the plethystic description
of H*(PConf,(R?%), Q) as Sym(Lie) to compute its Frobenius
characteristic:
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where My(q) = 3 > /g 11(€)q”® is the dth necklace polynomial.

> Sundaram, Hanlon, and others used the plethystic description
of H*(PConf,(R?%), Q) as Sym(Lie) to compute its Frobenius
characteristic:

SRy

d>0 \-d j>1 g




Generating Functions and Euler Products

> Same strategy works in the squarefree case to give another
proof of CEF result,
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(Recall: ¢X is the Sy-character of H¥(PConf4(R?), Q).)

Bonus: Splitting measure interpretation gives us an efficient,
direct way to compute the characters )X and ¢¥.



Representation Stability — Asymptotic Stability

> For each k > 0, the sequences HX(PConfy(R?), Q) and
H?}(PConf4(R®), Q) are representation stable.

> CEF showed rep. stability translates into asymptotic stability
for first moments of factorization stats given by character
polynomials P,
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Representation Stability from Growing Gaps

> Rep. stability and asymp. stability follow directly from Euler
products (observed by Fulman, Chen, Hersh-Reiner, and others.)
> Connection to configuration spaces only needed to get Schur
positivity.
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Key: My(q) = 367 + 0(q"/?)

> Gaps between leading and subsequent term grow with d.
> Growing gaps imply values of ¢ and X are given by
character polynomials independent of d.



Representation Stability from Growing Gaps

Theorem (Growing Gaps Principle)

Let F4(q) for d > 1 be a sequence of polynomials with

deg F4(q) = d such that for each g > 1, F4(q) = 1% + 0(q%~9)
for all but finitely many d > 1. Define symmetric group class
functions XZ by an Euler product,
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Then for each k > 0, the sequence X’é exhibits representation
stability.

> This is a preliminary version of a general principle.



Bounded Multiplicity Polynomial Statistics

>Letm > 1and let Poly(] (Fq) be the subset of polynomials in
Poly4(Fg) with max factor multiplicity < m.

Ex. Poly$ (Fq) = Poly}(Fy).

>LetvM(\) = %Hf € PolyT(Fq) : fact. type of f = \}| for
A d, then
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> Growing gap principle implies coefficients of v satisfy rep.
stability and thus asymp. stability.

> Coefficients of v are typically virtual characters.



Sundaram’s Lie Variants

>Let g : N — R be a function and consider

Fa(q) : Zg(e ae.
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> In recent work Sundaram uses the symmetric functions
defined by the coefficients of the Euler products
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to study variations of the Lie and Foulkes representations,
Schur positivity of sums of power sums, and positivity of
restricted row sums in symmetric group character tables.

> Growing gaps principle implies these symmetric functions
exhibit rep. stability.



Divisor Statistics on Varieties over [,

> Let V be a variety defined over Fy.
Confy(V)(Fq) := {Subsets C C V(Fy) : |C| = d, Frobq(C) = C}
Symg(V)(Fq) := {Multisubsets C C V(Fy) : |C| = d, Frobg(C) = C}

> Elements of Confy(V)(Fq) and Symy(V)(Fq) have
“factorization types” given by Frobenius orbits.
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where

M(V) = 5 3" () V(Fqe)
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counts the number of length d Frobenius orbits in V(Fy).



Divisor Statistics on Varieties over [,

Z p(e)V(Fgae)]
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> Weil conjecture imply that |V(Fqm)| is a polynomial in g and
finitely many other parameters.

> Chen used equivalent generating functions to show asymp.
stability for fac. statistics on these spaces.

© Weil conjectures imply My(V) has growing gaps, hence we get
rep. stability (for essentially any way we choose to define our
class functions.)



Thank you!




